
70

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

Parte 4: La Segunda Forma - FEEDBACK

71

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

4.0 Las Prácticas Técnicas de la Retroalimentación

¿Por qué la Segunda Forma?

En el ámbito de la tecnología, nuestro trabajo se desarrolla casi por completo en sistemas complejos
con un alto riesgo de consecuencias catastróficas. Como en la fabricación, a menudo descubrimos
problemas sólo cuando se producen grandes fallos, como una interrupción masiva de la producción o
una de producción o un fallo de seguridad que provoque el robo de datos de los clientes.

Hacemos que nuestro sistema de trabajo sea más seguro creando un flujo de información rápido,
frecuente y de alta calidad de alta calidad a través de nuestro flujo de valor y nuestra organización, que
que incluye bucles de retroalimentación y alimentación. Esto nos permite:

•	 Detectar y remediar problemas mientras aún son pequeños, más baratos y más fáciles de arreglar
•	 Evitar los problemas antes de que causen una catástrofe, y
•	 Crear un aprendizaje organizativo que que integramos en el trabajo futuro
•	 Tratar a los fallos y accidentes, cómo oportunidades de aprendizaje, en lugar de una causa de castigo

y culpa

Puntos a cubrir

Mientras que la Primera Vía describe los principios que permiten el rápido flujo de traba de izquierda
a derecha, la Segunda Vía describe los principios que permiten la de la derecha a la izquierda en todas
las etapas del flujo de valor. Nuestro objetivo es crear un sistema de trabajo cada vez más seguro y
resiliente.

En esta sección explicaremos:

1.	 Cómo crear telemetría para poder ver y resolver problemas
2.	 Utilizar nuestra telemetría para anticipar mejor los problemas y alcanzar los objetivos
3.	 Integrar la investigación y el feedback de los usuarios en el trabajo de los equipos de producto
4.	 Permitir la retroalimentación para que los departamentos de desarrollo y operaciones puedan

realizar los despliegues de forma segura
5.	 Permitir la retroalimentación para aumentar la calidad de nuestro trabajo a través de revisiones por

pares y la programación por pares

72

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

•	 4.1 Cómo crear telemetría para poder ver y
resolver problemas.

•	 4.2 Integrar la investigación y el feedback de
los usuarios en el trabajo de los equipos de
producto

•	 4.3 Permitir la retroalimentación para que los
departamentos de desarrollo y operaciones
puedan realizar los despliegues de forma
segura

•	 4.4 Permitir la retroalimentación para
aumentar la calidad de nuestro trabajo a través
de revisiones por pares y la programación por
pares

Agenda

4.1 Telemetría: ¿Por qué?

Crear telemetría para permitir ver y resolver problemas

Un hecho de la vida en Operaciones, o cuando trabajamos con sistemas complejos, es que las cosas
van a salir mal: pequeños cambios pueden llevar a resultados inesperados, incluyendo cortes y fallos
globales que afectan a todos nuestros clientes. Esta es la realidad de la gestión de sistemas complejos:
ninguna persona puede ver todo el sistema y entender cómo encajan todas las piezas.

Durante una interrupción al servicio, es posible que no se pueda determinar si el problema se produce
debido a una falla:
•	 En nuestra aplicación (por ejemplo, defecto en el código)
•	 En nuestro entorno (por ejemplo, un problema de red, problema de configuración del servidor)
•	 Algo totalmente externo a nosotros (por ejemplo, un ataque masivo de denegación de servicio)

Ante esta situación, debemos usar un enfoque disciplinado para resolver problemas, utilizando la
telemetría de la producción para entender los posibles factores que están contribuyendo al evento y
así poder enfocarse en la solución de problemas, a diferencia de simplemente “reiniciar los servidores”
a cada rato.

73

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

La telemetría cómo habilitador en el
diagnóstico

Para habilitar este comportamiento disciplinado
de resolución de problemas, tenemos que diseñar
nuestros sistemas para crear continuamente
telemetría.

Telemetría se define como "un proceso de
comunicación automatizado por el que se recogen
mediciones y otros datos en puntos remotos y se
transmiten a equipos receptores para su control".

Nuestro objetivo es crear telemetría dentro
de nuestras aplicaciones y entornos, tanto en
nuestra pre-producción como en los ambientes
productivos, incluyendo nuestra cadena de
despliegue.

Cultura de Causalidad: las organizaciones de mejor
desempeño resultaron ser mucho más efectivas
tanto en el diagnóstico, cómo en la corrección de los
incidentes de servicio que sus pares.

¿Por qué la telemetría?

En la Conferencia Velocity de 2012, McDonnell describió cuánto riesgo eso creaba:

"Estábamos cambiando algunas de nuestras infraestructuras más críticas, que, idealmente, los
clientes nunca notarían. Sin embargo, ellos definitivamente notarán si nosotros estropeemos algo.
Necesitábamos más métricas para darnos la confianza de que no estábamos realmente rompiendo
las cosas mientras hacíamos estos grandes cambios, tanto para nuestros equipos de ingeniería y para
miembros del equipo en áreas no técnicas, como marketing”.

"Comenzamos a recoger toda la información de nuestro servidor en una herramienta de nombre
Ganglia, mostrando toda la información en Graphite, una herramienta de código abierto en la que
invertimos pesadamente. Al hacer esto, podríamos ver más rápidamente cualquier efecto colateral de
el despliegue no intencional. Incluso empezamos a poner pantallas de televisión en toda la oficina para
que todos pudieran ver el rendimiento de nuestros servicios”.

74

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

Mejora la capacidad de resolver incidentes

Las organizaciones de alta performance
resuelven incidentes de producción 168 veces
más rápido que sus pares, con un promedio de
alto rendimiento que tiene un MTTR medido
en minutos, mientras que la mediana de bajo
rendimiento tuvo un MTTR medido en días. Las
dos principales prácticas técnicas que permitieron
el MTTR rápido fueron:

•	 El uso del control de versiones por Operaciones
•	 La utilización de telemetría y monitoreo

proactivo en el entorno de producción

El objetivo es garantizar que siempre tengamos
telemetría suficiente para poder confirmar
que nuestros servicios están funcionando
correctamente en todos nuestros ambientes.

Resumen

El objetivo es asegurar que siempre tengamos
suficiente telemetría para que podamos confirmar
que nuestros servicios están funcionando
correctamente en producción.

Y cuando se produzcan problemas, hacer que sea
posible determinar rápidamente lo que va mal
y tomar decisiones informadas sobre la mejor
manera de solucionarlo, idealmente mucho antes
de que los clientes se vean afectados.

Además, la telemetría es lo que nos permite
reunir nuestra mejor comprensión de la realidad
y detectar cuando nuestra comprensión de la
realidad es incorrecta.

Fuente: DevOps Handbook

75

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

4.1 Telemetría: Arq. de Monitoreo Moderna

Infraestructura de Telemetría Centralizada

Durante décadas hemos acabado con silos de información, donde Desarrollo sólo crea eventos de
registro que son útiles para los desarrolladores, y Operaciones sólo supervisa si los entornos están
activos o inactivos.

El resultado es que cuando ocurren eventos inoportunos, nadie puede determinar por qué todo el
sistema no está funcionando como se diseñó o qué componente específico está fallando, impidiendo
nuestra capacidad de devolver el sistema a su estado de funcionamiento.

Debemos diseñar y desarrollar nuestras aplicaciones y entornos para que generen telemetría suficiente,
permitiéndonos entender cómo nuestro sistema se está comportando como un todo.

Infraestructura de Telemetría Centralizada
y Moderna

Cuando todos los niveles de nuestro ecosistema de
aplicaciones tienen monitoreo y registro, habilitamos
otros recursos importantes, como gráficos y
visualización de nuestras métricas, detección de
anomalías, alerta proactiva y escalonamiento, etc.
Para ello se sugiere:
•	 Recolección de datos en la capa de lógica de

negocios, aplicaciones y entornos: para crear
telemetría en forma de eventos, logs y métricas

•	 Un enrutador de eventos responsable de
almacenar nuestros eventos y métricas: este
recurso permite la visualización, la tendencia, la
alerta, la detección de anomalías, etc

Enrutador de
Eventos

Destino:
Almacenado

Gráfico
Alerta

Lógica del Negocio

Aplicación

Sistema Operativo

E
ve

n
to

s,
 R

eg
is

tr
o

s,
 M

ét
ri

ca
s

Estructura de Monitoreo

76

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

Arquitectura de monitoreo moderna

•	 Al centralizar los registros:
•	 Podemos convertirlos en métricas que

podemos contabilizar en el enrutador de
eventos

•	 Al transformar los logs en métricas:
•	 Es posible realizar operaciones estadísticas,

como usar la detección de anomalías
para encontrar valores discrepantes y
variaciones más rápidamente

Adicionalmente, podemos recoger telemetría en el pipeline de despliegue en eventos importantes, ej.:
las pruebas automatizadas que pasan o fallan o en los despliegues que se están realizando en cualquiera
de los entornos.

También puedo recoger telemetría de la duración o el tiempo que se está tomando el ejecutar nuestros
Builds o corridas de pruebas de regresión.

Al hacer esto, podemos detectar condiciones que podrían indicar problemas, como por ejemplo si la
prueba de rendimiento o nuestra compilación tarda el doble de lo normal, lo que nos permite encontrar
y corregir los errores antes de que pasen a producción.

https://www2.microstrategy.com/producthelp/Current/PlatformAnalytics/en-us/Content/pa_architecture_examples.htm

77

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

4.1 Telemetría: Logging de Aplicaciones

Crear Telemetría De Registro De Aplicaciones Que Ayuda A La Producción

Todos los miembros del pipeline utilizarán la telemetría de varias maneras:
•	 El equipo DEV pueden crear temporalmente más telemetría en su aplicación para diagnosticar

mejor los problemas en su local
•	 El equipo OPS puede usar la telemetría para diagnosticar un problema de producción
•	 Infosec y los auditores pueden revisar la telemetría para confirmar la eficacia de un control necesario,

rastrear los resultados de negocios, el uso de recursos o las tasas de conversión

Crear registros de telemetría

Para soportar estos varios modelos de uso,
tenemos diferentes niveles de registro, algunos
de los cuales también pueden accionar alertas,
como los siguientes:

•	 Nivel de DEBUG
•	 Nivel INFO
•	 Nivel de WARN (alerta)
•	 Nivel de ERROR (excepción)
•	 Nivel FATAL

Crear registros de telemetría

Todos los eventos potencialmente significativos de la aplicación deben generar entradas de registro,
incluidas las que figuran en esta lista elaborada por Anton A. Chuvakin, vicepresidente de investigación
del grupo GTP Security and Risk Management de Gartner:

•	 Decisiones de autenticación/autorización (incluido el cierre de sesión)
•	 Acceso al sistema y a los datos
•	 Cambios en el sistema y las aplicaciones (especialmente los cambios de privilegios)
•	 Cambios en los datos, como añadir, editar o eliminar datos
•	 Entradas no válidas (posibles inyecciones maliciosas, amenazas, etc.)
•	 Recursos (RAM, disco, CPU, ancho de banda o cualquier otro recurso que tenga límites)
•	 Salud y disponibilidad del servicio
•	 Arranques y paradas
•	 Fallos y errores
•	 Disparos de circuit breakers
•	 Retrasos / Delays
•	 Éxito/fallo de las copias de seguridad

78

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

Logging para mejorar el análisis de los incidentes

La telemetría nos permite utilizar el método científico para formular hipótesis sobre la causa de un
problema concreto y lo que se necesita para resolverlo. Ejemplos de preguntas que podemos responder
durante la resolución del problema incluyen:

•	 ¿Qué pruebas tenemos de nuestra monitorización de que un problema se está produciendo
realmente?

•	 ¿Cuáles son los eventos y cambios relevantes en nuestras aplicaciones y entornos que podrían haber
contribuido al problema?

•	 ¿Qué hipótesis podemos formular para confirmar la relación entre las causas y los efectos
propuestos?

•	 ¿Cómo podemos demostrar cuáles de estas hipótesis son correctas y solucionar el problema con
éxito?

El valor de la resolución de problemas basada en hechos no sólo radica en un mejor MTTR (y mejores
resultados para el cliente), sino también en el refuerzo de la percepción de una relación de beneficio
mutuo entre Desarrollo y Operaciones.

4.1 Telemetría: Radiadores de Información
Crear Autoservicios para Acceso a Radiadores De Información y Telemetría

Queremos que nuestra telemetría de producción sea muy visible, lo que significa ponerla en áreas
centrales donde trabajen Desarrollo y Operaciones, permitiendo así que todos los que estén interesados
vean cómo están funcionando nuestros servicios (Desarrollo, Operaciones, Gestión de Productos e
Infosec. entre otros)

Se promueve la responsabilidad entre los miembros del equipo, demostrando activamente valores:

•	 El equipo no tiene nada que esconder de sus visitantes (clientes, partes interesadas, etc.)
•	 El equipo no tiene nada que esconder de sí mismo: reconoce y enfrenta problemas

79

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

https://www.boldbi.com/integrations/azure-devops

4.1 Telemetría: Brechas en la Telemetría

Encontrar y rellenar las lagunas en la Telemetría

Para conseguirlo es necesario crear suficiente telemetría en todas las caps de las aplicaciones y para
todos nuestros entornos, así como para los pipelines de despliegue que los soportan. Necesitamos
métricas de los siguientes niveles:

•	 Nivel de negocio
•	 Nivel de aplicación
•	 Nivel de infraestructura
•	 Nivel de software del cliente
•	 Nivel de pipelines de despliegue

Al tener cobertura de telemetría en todas estas áreas, podremos ver la salud de todo aquello en lo que
se basa nuestro servicio, utilizando datos y hechos en lugar de rumores, acusaciones, culpas, etc.

80

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

Encontrar y rellenar las lagunas en la Telemetría

•	 Nivel de negocio: Los ejemplos incluyen el número de transacciones de ventas, los ingresos de las
transacciones de ventas, las inscripciones de usuarios, la tasa de abandono, los resultados de las
pruebas A/B, etc

•	 Nivel de aplicación: Los ejemplos incluyen los tiempos de transacción, los tiempos de respuesta de
los usuarios, fallos de la aplicación, etc

•	 Nivel de infraestructura (por ejemplo, base de datos, sistema operativo, red almacenamiento): Los
ejemplos incluyen el tráfico del servidor web, la carga de la CPU, el uso del disco, etc

•	 Nivel de software del cliente (por ejemplo, JavaScript en el navegador del cliente, aplicación móvil):
Los ejemplos incluyen errores y fallos de la aplicación, tiempos de transacción medidos por el
usuario, etc.

•	 Nivel de Pipeline de despliegue: Los ejemplos incluyen el estado de la cadena de construcción (por
ejemplo, rojo rojo o verde para nuestros diversos conjuntos de pruebas automatizados), tiempos
de despliegue de cambios de despliegue, frecuencias de despliegue, promociones de entornos de
prueba y estado del entorno

4.1 Telemetría: Análisis Predictivos Telemetría

Analizar la telemetría para anticiparse mejor a los problemas y alcanzar los objetivos

Como vimos en la sección anterior necesitamos suficiente telemetría de producción en nuestras
aplicaciones e infraestructura para ver y resolver los problemas a medida que se producen. Es
importante que creemos herramientas que nos permitan descubrir variaciones y señales de fallo cada
vez más débiles ocultas en nuestra telemetría de producción para poder evitar fallos catastróficos.
Algunas técnicas que podemos usar son:
•	 Utilizar las medias y las desviaciones estándar para detectar posibles problemas
•	 Instrumentar y alertar sobre resultados no deseados
•	 Utilizar técnicas de detección de anomalías

Estas técnicas estadísticas que pueden utilizarse
para analizar nuestra telemetría de producción,
de modo que podamos encontrar y solucionar los
problemas antes que ocurran, a menudo cuando
todavía son pequeños y mucho antes de que
causen resultados catastróficos. Esto nos permite
encontrar señales de fallo cada vez más pequeñas
sobre las que podemos actuar, creando un sistema
de trabajo cada vez más seguro.

Fuente: DevOps Handbook

81

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

4.2 Feedback

Permitir la retroalimentación para que
el desarrollo y las operaciones puedan
desplegar el código con seguridad

En esta sección hablaremos de los mecanismos
de retroalimentación que nos permiten mejorar
nuestro servicio en cada etapa de nuestro
trabajo diario, ya sea desplegando cambios en
producción, arreglando el código cuando las
cosas van mal y se llama a los ingenieros, haciendo
que los desarrolladores sigan su trabajo aguas
abajo, creando requisitos no funcionales que
ayuden a los equipos de desarrollo a escribir un
código más listo para la producción, o incluso
devolviendo servicios problemáticos para que
sean autogestionados por Desarrollo.

Ampliar los ciclos de feedback

Al crear estos bucles de retroalimentación, hacemos que los despliegues de producción sean más
seguros, aumentamos la preparación para la producción del código creado por Desarrollo y ayudamos
a crear una mejor relación de trabajo entre Desarrollo y Operaciones al reforzar los objetivos, las
responsabilidades y la empatía compartidos.

Algunas acciones para mejorar el feedback:
•	 Usar la telemetría para hacer el proceso de despliegue más seguro
•	 Rotación del Standby entre Operaciones y Desarrollo
•	 Hacer que los desarrolladores acompañan los procesos aguas abajo (downstream)
•	 Hacer que los desarrolladores autogestionen al principio su servicio en producción

•	 Launch Guidance
•	 Launch Readiness Review
•	 Hand Off Readiness Review

82

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

Aumente la telemetría para liberaciones
más seguras

Monitorear activamente las métricas asociadas a las
funcionalidades durante el despliegue, garantiza que
no violamos nuestro servicio inadvertidamente o,
peor, que violamos otro servicio.

Si el cambio se rompe o perjudica cualquier
funcionalidad, trabajamos rápidamente para
restaurar el servicio, trayendo a quien más necesite
para diagnosticar y corregir el problema.

Se puede optar por:
•	 Desactivar los recursos rotos con la "Feature

Toggles”
•	 Corregir
•	 Dar Marcha atrás

Comparta deberes entre Dev y Ops (Stand-bys, Pager Rotation, Prod Issue Resolution,
etc)

En cualquier servicio complejo todavía tendremos problemas inesperados, como incidentes e
interrupciones que ocurren en momentos inoportunos y que se presentan de manera consistente
(todas las noches a las 2 de la mañana). Estos, si no se corrigen, pueden causar problemas recurrentes
con daño a las Operaciones e impacto a los usuarios.

Para evitar que esto ocurra, todos los participantes del flujo de valor comparten las responsabilidades
de manejar los incidentes operativos. De este modo, el departamento de operaciones no se enfrenta,
aislado y solo, a los problemas de producción relacionados con el código, sino que todo el mundo ayuda
a encontrar el equilibrio adecuado entre la corrección de los defectos de producción y el desarrollo de
nuevas funcionalidades, independientemente del lugar en el que nos encontremos en el flujo de valor.

Dev Team acompaña aguas abajo su desarrollo

Una de las técnicas más poderosas en interacción y diseño de experiencia del usuario (UX) es la
investigación contextual, que es cuando el equipo del producto observa a un cliente utilizar la aplicación
en su entorno natural, generalmente trabajando en su escritorio.

Nuestro objetivo es utilizar esa misma técnica para observar cómo nuestro trabajo afecta a nuestros
clientes internos. Los desarrolladores deben seguir su trabajo en sentido descendente, de modo que
puedan ver cómo los centros de trabajo descendentes deben interactuar con su producto para llevarlo
a producción.

83

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

Al hacer esto, creamos una retroalimentación sobre los aspectos no funcionales de nuestro código
-todos los elementos que no están relacionados con la función de cara al cliente, e identificamos formas
de mejorar la capacidad de despliegue, gestión y funcionamiento, etc.

Dev teams auto gestionando sus servicios en producción al inicio

Cuando los desarrolladores han desplegando y están ya ejecutando su código en entornos de
producción diariamente pueden surgir errores graves.

Aun equipos experimentados de Operaciones pueden experimentar lanzamientos de producción
desastrosos porque es la primera vez que realmente vemos cómo nuestro código se comporta durante
una liberación y bajo condiciones reales de producción.

Una contramedida potencial es tener grupos de desarrollo auto gestionando sus servicios en
producción antes de ser elegibles para ser entregados a un grupo de operaciones administrado
centralizado.

Al hacer que el equipo de desarrollo gestione inicialmente sus propias aplicaciones y servicios, el
proceso de transición de nuevos servicios a la producción se hace mucho más fácil y previsible.

Ops puede retornar un módulo a desarrollo
nuevamente

Para servicios ya en producción, necesitamos
un mecanismo diferente para garantizar que
Ops nunca quede atrapada en un servicio no
soportable en producción.

Podemos crear un mecanismo de devolución
(handback), cuando un servicio de producción
se vuelve muy frágil, Ops tiene la capacidad
de devolver la responsabilidad del soporte a la
producción de vuelta al Dev.

Cuando un servicio retorna a un estado
administrado por el desarrollador, la función de
Operaciones pasa del soporte a la producción
para la consulta, ayudando al equipo a preparar el
servicio para la producción.

84

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

Guia de Lanzamiento (Launch Guidance)

Al crear una guía de lanzamiento, ayudamos a garantizar que cada equipo de producto se beneficie
de la experiencia acumulada y colectiva de toda la organización, especialmente de Operaciones. Las
orientaciones y los requisitos de lanzamiento incluirán probablemente lo siguiente:
•	 Recuento y gravedad de los defectos: ¿La aplicación funciona realmente como se ha diseñado?
•	 Tipo/frecuencia de las alertas de buscapersonas: ¿Genera la aplicación un número insoportable de

alertas en producción?
•	 Cobertura de la supervisión: ¿La cobertura de la supervisión es suficiente para restablecer el

servicio cuando las cosas van mal?
•	 Arquitectura del sistema: ¿Está el servicio lo suficientemente desacoplado como para soportar un

alto índice de cambios y despliegues en producción?
•	 Proceso de despliegue: ¿Existe un proceso predecible, determinista y suficientemente automatizado

para desplegar el código en producción?
•	 Higiene de producción: ¿Existe evidencia de suficientes buenos hábitos de producción que permitan

que el soporte de producción sea gestionado por cualquier otra persona?

Superficialmente, estos requisitos pueden parecer similares a las listas de control de producción
tradicionales que hemos utilizado en el pasado. Sin embargo, las diferencias clave son que requerimos
una supervisión eficaz, que los despliegues sean fiables y deterministas, y una arquitectura que soporte
despliegues rápidos y frecuentes.

Launch Readiness Review y Hand-Off Readiness Review

1 32

HRR

E
st

ab
ili

d
ad

Tiempo

Lanzamiento

Transferencia
Nuevos Lanzamientos

LRR

¡Clientes
activos!

SRE
Autoejecución
(+ de 6 meses)Creación

3 54

HRR

Es
ta

bi
lid

ad

Tiempo

Transferencia

Devolución
HRR

SREAutoejecuciónSRE

Transferencia

SRE: Ingeniero de Confiabilidad de Si�o
LRR: Revisión de Preparación de Lanzamiento
HRR: Revisión de Preparación para la Entrega Fuente: DevOps Handbook

85

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

4.2 Feedback

Launch Readiness Review y Hand-Off Readiness Review

Google ha creado dos conjuntos de comprobaciones de seguridad para dos etapas críticas del
lanzamiento de nuevos servicios, denominadas Launch Readiness Review y Hand-Off Readiness
Review (LRR y HRR, respectivamente).

La LRR debe realizarse y aprobarse antes de que cualquier nuevo servicio de Google se ponga a
disposición del público y reciba tráfico de producción en directo, mientras que la HRR se realiza cuando
el servicio pasa a un estado gestionado por operaciones, normalmente meses después de la LRR.

Las listas de comprobación de la LRR y la HRR son similares, pero la HRR es mucho más estricta y tiene
normas de aceptación más estrictas, mientras que la LRR es autoinformada por los equipos de producto.

Fuente: DevOps Handbook

86

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

4.3 Desarrollo Basado en Hipótesis

Integrar el desarrollo basado en hipótesis
y las pruebas A / B en nuestro trabajo
diario

Con demasiada frecuencia, en los proyectos de
software, los desarrolladores trabajan en las
funciones durante meses o años, abarcando
varias versiones, sin confirmar nunca si se
están cumpliendo los resultados empresariales
deseados, como por ejemplo si una función
concreta está logrando los resultados deseados o
incluso si se está utilizando.

"La forma más ineficiente de probar un modelo
de negocio o una idea de producto es construir el
producto completo para ver si la demanda prevista
realmente existe” - Jez Humble.

Antes de construir una funcionalidad, debemos preguntarnos:
•	 ¿Debemos construirlo? y
•	 ¿Por qué?

Luego, deberíamos realizar los experimentos más baratos y rápidos posibles para validar a través de
la investigación del usuario si la función deseada realmente logrará los resultados deseados. Podemos
utilizar técnicas cómo:
•	 Desarrollo impulsado por hipótesis
•	 Los embudos de adquisición de clientes
•	 Las pruebas A / B

“La manera más ineficiente de probar un modelo de negocio o una idea de producto es construir el producto
completo para ver si la demanda prevista realmente existe”.

87

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

4.3 Desarrollo Basado en Hipótesis – Construcción de Funcionalidades

Integración de Prueba A/B en la validación de funcionalidades

Una técnica de búsqueda de usuarios es la definición del pipeline de adquisición de clientes y la
realización de pruebas A / B.

La técnica A/B más comúnmente usada en la moderna práctica de UX implica un sitio en el que los
visitantes se seleccionan aleatoriamente para exhibir una de las dos versiones de una página, un control
(el "A") o un tratamiento (el "B").

4.3 Desarrollo Basado en Hipótesis – Liberaciones

Integración de Prueba A/B en la liberación

Las pruebas A/B rápidas e iterativas son posibles gracias a la capacidad de realizar despliegues de
producción de forma rápida y fácil bajo demanda.
•	 Esto requiere una telemetría de producción útil en todos los niveles del conjunto de aplicaciones

Al entrar en nuestro recurso o funcionalidad, se puede controlar qué porcentaje de los usuarios ve la
versión de tratamiento de un experimento.

88

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

4.3 Desarrollo Basado en Hipótesis – Planificación

Integración de Prueba A/B en la planificación de funcionalidades

Una vez que tenemos la infraestructura para apoyar el lanzamiento y las pruebas de características A/B,
debemos hacer que los Product Owners piensen en cada característica como una hipótesis y utilicen
nuestros despliegues de producción como experimentos con usuarios reales para probar o refutar esa
hipótesis.

La construcción de experimentos debe diseñarse en el contexto del general de adquisición de clientes.
Barry O'Reilly, coautor de “Lean Enterprise: How High Performance Organizations Innovate at Scale” ,
describió cómo podemos enmarcar las hipótesis en el desarrollo de características.

Podemos enmarcar las hipótesis en el desarrollo de características de la siguiente forma:
•	 Creemos que aumentar el tamaño de las imágenes del hotel en la página de reservas dará lugar a una

mejora del compromiso y la conversión de los clientes
•	 Tendremos confianza para proceder cuando veamos un aumento del 5% en clientes que revisan las

imágenes del hotel y que luego proceden a reservar en cuarenta y ocho horas

Adoptar un enfoque experimental para el desarrollo de productos requiere no sólo dividir el trabajo
en pequeñas unidades (historias o requisitos), sino también validar si cada unidad de trabajo genera
los resultados esperados. Si no lo hace, modificamos nuestra hoja de ruta de trabajo con caminos
alternativos que realmente alcancemos los resultados esperados.

4.4 Revisión de Pares

Crear procesos de revisión y coordinación para aumentar la calidad de nuestro trabajo actual

Nuestro objetivo es permitir que Desarrollo y Operaciones trabajen colaborativamente para reducir
el riesgo que representa introducir cambios en la producción antes de que se realicen los despliegues.

Tradicionalmente, cuando revisamos los cambios para la implementación, tendemos a depender en
gran medida de las revisiones, inspecciones y aprobaciones justo antes de la implementación. Con
frecuencia, esas aprobaciones son otorgadas por equipos externos que a menudo están demasiado
alejados del trabajo para tomar decisiones informadas sobre si un cambio es arriesgado o no, y el tiempo
requerido para obtener todas las aprobaciones necesarias también alarga nuestro cambio.

En esta sección vamos a compartir unas prácticas técnicas más eficientes para reducir el riesgo de los
despliegues en produccion.

89

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

4.4 Revisión y Coordinación

Crear procesos de revisión y coordinación
para aumentar la calidad del trabajo

El proceso de revisión por pares en GitHub
es un ejemplo impresionante de cómo la
inspección puede aumentar la calidad, hacer
que los despliegues sean más seguras y hacerlo
integrándose al flujo de trabajo diario de todos.

Ellos fueron pioneros en el proceso llamado pull
request, una de las formas más populares de
revisión por pares que abarca Dev y Ops.

El objetivo ahora es permitir que el Desarrollo y
las Operaciones reduzcan el riesgo de cambios en
la producción antes de que se realicen.

Crear procesos de revisión y coordinación

El Flujo de GitHub está compuesto de cinco
etapas:
1.	 Para trabajar en algo nuevo, el desarrollador

crea una branch local desde Master (por
ejemplo, "new-auth2-scopes")

2.	 El desarrollador efectúa sus cambios en ese
branch localmente, enviando regularmente
su trabajo al mismo branch nombrado en el
servidor

3.	 Cuando necesiten feedback o ayuda, o cuando
crean que el branch está listo para ser “merged”
crean un pull request

4.	 Cuando se hayan resuelto los comentarios
al código y se obtengan las aprobaciones
necesarias del recurso, el desarrollador podrá
mezclarlo al maestro

5.	 Cuando los cambios de código se mezclan y se
envían a master, el desarrollador las despliega
en producción

90

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

Pull Request

Un pull request de mala calidad es aquel que no tiene contexto suficiente para el lector, con poca o
ninguna documentación de lo que el cambio pretende hacer.

Por ejemplo, un pull request que simplemente contiene el siguiente texto: "Corregir el problema 3616
y 3841".

Descripción recomendada en un pull request:
•	 Debe haber suficientes detalles sobre por qué se está haciendo el cambio
•	 Como el cambio fue hecho
•	 Cualquier riesgo identificado
•	 Contramedidas resultantes

Información mejor de la solicitud tirada:
•	 Riesgos adicionales señalados
•	 Ideas sobre las mejores formas de desplegar el cambio deseado
•	 Ideas sobre cómo mejor atenuar el riesgo

Peligros potenciales del “control excesivo”

Los mecanismo para la gestión de cambio (Change
Management) tradicionales pueden llevar a
resultados negativos no intencionales, cómo lo
son agregar retrasos adicionales a la entrega y una
reducción la inmediatez del feedback necesario,y
por lo tantos de su impacto, en el proceso de
despliegue.

“Las personas más cercanas a un problema
generalmente saben más sobre él” – STP.

91

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

Algunos de los controles que muchas veces implementamos cuando ocurren fallas en el proceso de
control de cambios:
•	 Agregar más preguntas al formulario de solicitud de cambio
•	 Exigir más autorizaciones, como más un nivel de aprobación de gestión (por ejemplo, el

vicepresidente, el CIO)
•	 Exigir más tiempo de preparación para aprobaciones de cambios, para que se evalúen adecuadamente

Estos controles generalmente agregan más fricción al proceso de despliegue, multiplicando el número
de etapas y aprobaciones, y aumentando el tamaño de los lotes y los plazos de implementación.

Una de las creencias fundamentales del Sistema de Producción Toyota es que "las personas más
cercanas a un problema suelen ser las que más saben sobre él". Esto se acentúa a medida que el trabajo
que se realiza y el sistema en el que se produce el trabajo se vuelven más complejo y dinámico, como es
típico en los flujos de valor de DevOps.

Como se ha demostrado repetidas veces, cuanto mayor es la distancia entre la persona que realiza
el trabajo (es decir, el implementador del cambio) y la persona que decide sobre hacerlo (es decir, el
autorizador de cambio), peor el resultado.

“Las personas más cercanas a un problema generalmente saben más sobre él” – STP.

Coordinación y programación del cambio

Siempre que tengamos varios grupos trabajando en sistemas que comparten dependencias es probable
que haya que coordinar nuestros cambios para garantizar que no interfieran entre sí (por ejemplo, la
organización, la agrupación y la secuenciación de los cambios).

En informática y diseño de sistemas, un sistema poco acoplado es aquel en el que cada uno de sus
componentes hacen uso, o tienen poca o ninguna interacción con las funciones de otros componentes
separados. Las subáreas incluyen el acoplamiento de clases, interfaces, datos y servicios. Sistemas
altamente acoplados son los sistemas que están altamente interconectados.

En general:
•	 Cuanto más desacoplada sea nuestra arquitectura, menos tendremos comunicación y coordinación

con otros equipos de componentes. Si arquitectura está realmente orientada a los servicios, los
equipos pueden realizar cambios con un alto grado de autonomía, y es poco probable que los
cambios locales provoquen interrupciones globales

•	 Sin embargo, incluso en una arquitectura poco acoplada, cuando muchos equipos realizan cientos
de despliegues independientes al día, puede existir el riesgo de que los cambios interfieran unos con
otros (por ejemplo, pruebas A/B simultáneas). Para mitigar estos riesgos, podemos utilizar salas de
chat para anunciar los cambios y encontrar proactivamente los conflictos que puedan existir

Para mitigar riesgos, podemos utilizar salas de chat (tipo Slack) para anunciar cambios y localizar de manera
proactiva posibles conflictos.

92

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

•	 En el caso de organizaciones más complejas y con arquitecturas más acopladas es posible que
tengamos que programar deliberadamente nuestros cambios, y hacer que representantes de los
equipos se reúnan, no para autorizar cambios, sino para programar y secuenciar sus cambios para
minimizar los accidentes

•	 Sin embargo, en algunas áreas, como los cambios en la infraestructura global (por ejemplo, los
cambios en los nodos la red, cambios en los conmutadores de la red central) siempre tendrán
un mayor riesgo asociado. Estos cambios siempre requerirán contramedidas técnicas, como la
redundancia la conmutación por error, la realización de pruebas exhaustivas y (en el mejor de los
casos) la simulación

Revisión de Pares del Código

En lugar de exigir la aprobación de un órgano externo antes del despliegue, podemos exigir que los
ingenieros hagan revisiones de sus cambios.

El objetivo:
•	 Encontrar errores, con los ingenieros cercanos al trabajo, examinando nuestros cambios
•	 Mejorar la calidad de nuestros cambios
•	 Crear los beneficios de la capacitación cruzada, el aprendizaje entre pares y la mejora de las

habilidades

Pero para cambios en la base de datos o componentes esenciales para los negocios con baja cobertura de
prueba automatizada, podemos exigir una revisión adicional de un especialista en el tema (por ejemplo,
ingeniero de seguridad de la información, ingeniero de base de datos) o varias revisiones (por ejemplo, "+2"
en lugar de sólo "+1").

Desempeño de TI
Revisión de Colegas vs. Aprobación de Cambio

Cuando las orgs utilizaron revisión de colegas
(en lugar de aprobaciones de cambio) ...

... el desempeño de TI aumentó

D
es

em
pe

ño
 d

e
TI

Usa aprobación de cambio / Usa revisión de colegas Fuente: DevOps Handbook

93

D
EV

O
PS

 A
D

VA
N

CE
D

 P
RO

FE
SS

IO
N

AL
 C

ER
TI

FI
CA

TE
 D

AP
C™

El principio de tamaños pequeños de lotes también se aplica a revisiones de código.
•	 Cuanto mayor sea el tamaño de la alteración que necesita ser revisada, más tiempo lleva a entender

y mayor es la carga sobre el ingeniero revisor

Existe una relación no lineal entre el tamaño del cambio y el riesgo potencial de integrar ese cambio -
cuando usted pasa de un cambio de código de diez líneas a un código de cien líneas, el riesgo de algo ir
mal es más de diez veces mayor, y así sucesivamente.
•	 La capacidad de criticar significativamente los cambios de código disminuye a medida que el tamaño

del cambio aumenta. "Pida a un programador para revisar diez líneas de código, él encontrará diez
ediciones. Pídale a él para hacer quinientas palabras, y él dirá que parece bueno”.

Directrices generales para las revisiones de código:

•	 Todos deben tener a alguien que revise sus cambios antes de integrarlos a la rama principal
•	 Todos deben supervisar el flujo de commits de sus compañeros de equipo para que se puedan

identificar y revisar los posibles conflictos
•	 Definir qué cambios se consideran de alto riesgo y pueden requerir la revisión de un experto (por

ejemplo, cambios en la base de datos, módulos sensibles a la seguridad, como la autenticación, etc.)
•	 Si alguien envía un cambio que es demasiado grande para entender con facilidad, es decir, no se

puede entender su impacto después de leerlo un par de veces, o hay que pedirle al remitente que lo
aclare, este cambio debería dividirse en varios cambios más pequeños que puedan entenderse de
un vistazo

Programación del Código en Pares

Las revisiones de código vienen en varias formas:

•	 Programación en pares
•	 Revisión sobre los hombros
•	 Envío de correo electrónico
•	 Revisión de código asistida por herramientas

Resumen

•	 Crear las condiciones que permitan a los
ejecutores del cambio apropiarse plenamente
de la calidad de sus cambios es una parte
esencial de la cultura generativa de alta
confianza que estamos tratando de construir.
Además, estas condiciones nos permiten crear
un sistema de trabajo cada vez más seguro,
en el que todos nos ayudamos mutuamente a
alcanzar nuestros objetivos, traspasando los
límites necesarios para conseguirlo.

